
Automatic Analog Design Procedure Including
Statistical Analysis of Circuit Performance

Felipe Antunes Quirino and Alessandro Girardi
Federal University of Pampa - UNIPAMPA

Alegrete, RS, Brazil
Email: felipequirino.aluno@unipampa.edu.br

Abstract—Analog integrated circuits have a high range of
applications, from interface circuits to signal processing. The
traditional method of designing an analog circuit is based
on trial-and-error. An alternative is to abstract the circuit as
an optimization problem and to use automatic procedures for
searching for an optimal solution. This work demonstrates an
optimization method applied to a low-voltage bulk-driven oper-
ational transconductance amplifier, taking into account the high
degree of variability caused by the manufacturing process. We
propose a tool for design automation of analog integrated circuits
which estimates performance with Monte Carlo simulation in
order to evaluate the effect of process variability on circuit
performance. Results demonstrate the viability of the proposed
methodology in 130nm technology compared to a manual design.

Index Terms—Analog IC design, Optimization algorithm, CAD
tool.

I. INTRODUCTION

Analog integrated circuits are very used in several appli-
cations, such as communication systems, Analog-to-Digital
(A/D)/ Digital-to-Analog (D/A) converters, and interface cir-
cuits. The design flow of such circuits is different from
the digital counterpart. It is required to size individually
each device, such as transistors, resistors and capacitors, for
achieving the desired electrical behavior. Each analog block
has its own particular performance features, which turns the
design automation difficult [1].

Traditional analog design methodology uses Simulation
Program with Integrated Circuit Emphasis (SPICE) simulator
to estimate circuit performance without having to build the
physical system. With a SPICE tool, it is possible to perform
electrical simulation for a given process technology. Thus, a
designer can estimate the features of the designed circuit and
verify whether or not it is necessary to change some parameter
to improve performance [2]. Therefore, the traditional trial-
and-error procedure of sizing an integrated circuit consists
in manual sizing each component of the system followed by
electrical simulations using SPICE tool. The experience of the
designer is fundamental in this case, since the search for a
sized circuit with good performance is dependent on the ability
to adjust the correct design parameters.

An alternative is to abstract the problem into an optimization
procedure. The circuit is modeled as a non-linear optimization
problem where devices sizes are the free variables. Each
feature of the circuit is simulated by a SPICE tool and a

cost function evaluates the circuit performance. Intending to
evaluate the cost function, the algorithm normalizes and makes
the sum of each circuit features. A poorer result converges in a
high cost, while the best solution converges into a small cost.
From the cost function, the optimization algorithm perturbs
the design parameters until the circuit performance converges
to an optimal point. In the literature, it is possible to find
optimization algorithms applied to this kind of problem, such
as Genetic Algorithm (GA) [3] or Cuckoo Search (CS) [4],
for example.

The technology used on analog ICs has a high degree of
variability in their physical parameters, which affects directly
the circuit performance.

The SPICE tool can estimate circuit performance variability
by performing Monte Carlo simulation. This is the process of
randomly selecting values within a range and applying to a
function multiple times. The result is a Gaussian distribution
curve that describes the output according to the variation of
the input values of the function [5]. It is necessary to moderate
the use of Monte Carlo simulation because it can demand a lot
of computational resources [1]. Thus, it is necessary to reduce
the computational time spent with Monte Carlo simulations
when exploring the search space.

This work describes the implementation of an optimization
algorithm for sizing a bulk-driven OTA described by [6].
For this propose, we model the analog sizing problem as an
optimization problem and solve it for searching for a feasible
solution. Part of this work is a spin-off of the work from [4],
which has shown the application of optimization algorithms
for automatic sizing an OTA. The contribution is the insertion
of statistical analysis in the optimization flow for the search
of optimal solutions under process variability.

II. DESIGN METHODOLOGY

Fig. 1 illustrates the proposed process of analog design
optimization. The optimization method initializes randomly
the design parameters and sends the circuit to the SPICE tool
for simulation. The simulated circuit is returned to the cost
function that evaluates the result. If the simulation has a feasi-
ble cost, the algorithm applies a Monte Carlo simulation. The
strategy of applying Monte Carlo only to feasible solutions
reduces considerably the total optimization time, avoiding
unnecessary Monte Carlo simulations. After a iteration, if the
stop criterion is not achieved, the optimization method perturbs

Alessandro Girardi


Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020



SPICE
nominal

 simulation

Optimization method
(perturbation of

design parameters)
Stop criterion

achieved?

Nominal
performance/
cost function
evaluation

Best solution
candidate?

SPICE Monte Carlo
 simulation

Monte Carlo performance/
cost function evaluation

Yes

NoNo

Yes

Technology
parameters

Circuit
topology

Variables
ranges

Design
specifications

Sized circuit

Fig. 1. Optimization procedure including statistical evaluation for best
solution candidates.

Fig. 2. Schematics of a low-voltage bulk-driven OTA [6].

the design parameters and sends the new circuit again to the
simulator. The stop criterion can be defined as the maximum
number of iterations or the minimal variation of the cost
function, for example. At the end, the algorithm returns the
best circuit found thus far.

We selected a case study for demonstrating the proposed
methodology. It is based on the bulk-driven operational am-
plifier proposed by [6] and previously sized with a method-
ology proposed by [4]. The operational amplifier schematic
is depicted in Fig. 2. The work of [4] used only nominal
simulation for exploring the design space, thus not considering
process variation. It means that the generated solution does not
represent an optimum solution under process variability. Also,
[4] used ideal current sources, which may not show the actual
performance of the proposed system. Thus, this work intends
to show the yield analysis with the complete circuit, including
real current sources.

For evaluating each circuit performance feature it is neces-
sary to execute some procedures. Two types of simulations are
necessary for extracting circuit characteristics: AC simulation
for extracting Low frequency Gain, Phase Margin and GBW;
and transient simulation for analysing the behavior of the
circuit over time, in which it is possible to extract the slew
rate of the circuit.

The low voltage gain and the unity frequency gain are
extracted through the circuit frequency response. Equation 1
describes how the module is calculated:

Av = 20 · log10(V out/V in) (1)

Here, V out and V in are the circuit output and input
voltages, respectively. The voltage gain is a complex function
composed of a real and an imaginary part. With the module we
can extract the absolute low frequency gain and with the phase
we can estimate phase margin. The extraction of GBW occurs
at the frequency point in which the voltage gain is unitary.

The phase margin (PM) is calculated with the following
equation applied at the unity gain frequency:

PM = 180 − abs(angle(V out/V in)) (2)

The angle function gets the angle of a complex number.
The abs function gets the absolute value of a real number.

Slew rate (SR) is calculated as:

SR = min(
∆V outi

∆ti
,

∆V outj
∆tj

) (3)

where min is a function that returns the minimum element,
∆V outi is the variation of the output at the rising transition,
∆ti is the variation of time at the rising transition, ∆V outj
is the variation of the output at the falling transition and ∆tj
is the variation of time at the falling transition. Getting the
minimum value guarantees the computation of the worst slew
rate value.

The power consumption is calculated as

P = IDD · VDD (4)

Here, IDD is the supply current and V DD is the supply
voltage. We can separate circuit specifications in objectives
and constraints. In this design we define power consumption
and GBW as objective functions to be minimized (maximized).
The remaining performance features are constraints in the
optimization problem, such as SR, Av0, area and phase margin.

Considering that more than one feature that influences on
the circuit performance, only the specification could not supply
the algorithm to search for an best solution. Thus, all these
specification could be abstracted as an cost function (e.g., a
sum of all specifications).

The cost function must include Monte Carlo simulation for
modeling circuit variation. For this, we consider all statistical
results as a normal distribution, which can be uniquely de-
scribed by a mean x̄i and a standard deviation σi. Using the
empirical rule, 68% of all samples are between x̄i − σi and
x̄i+σi, 95% are between x̄i−2σi and x̄i+2σi, and 99.7% are
between x̄i−3σi and x̄i +3σi [7]. With this rule it is possible
to define Equation 5, which is the main way for evaluating the
cost function in the present work.

fc =

N∑
i=0

(
x̄i + 3σi

x̂i
) (5)

The cost function is the sum of objective functions and con-
straint functions. The constraint function contributes nothing to
the cost function if the obtained result xi for the performance
feature is greater (smaller) than a reference value x̂i. This
reference value is defined by the user. The objective function
continuously contributes positively to the cost function and



Algorithm 1 Cuckoo search via Lévy flights
Objective Function fc(r), r = (r1, ..., rd);
Generate initial population of N host nests Xk(k =
1, 2, ..., N);
while (NOT stop criterion) do

Obtain new solutions by Lévy flights;
Evaluate the quality of fck ;
Choose randomly a h nest between 1, ..., N ;
if fck > fch then

Replace h by the new solution;
end if
Replace a fraction (p) of the worst nests;
Keep the best solutions of each nest;
Sort the nests by cost;

end while

decreases the value as the performance function gets smaller
(larger), even if it exceeds the reference.

The optimization algorithm is responsible for choosing
the design parameters since the circuit is abstracted as an
optimization problem. In this work we selected the Cuckoo
Search algorithm, due to its simplicity and efficiency [8].

The cuckoo search algorithm is based on the behavior of
a bird specie denominated cuckoo. The cuckoo put its eggs
in nests belonging to other birds. It tries to minimize the
probability of the host bird discover the intruder egg by
imitating its characteristics. In addition, the algorithm uses the
idea of Lévy flight for exploring the design space. The Lévy
flight follows a random function that tends to converge faster
compared to a random flight.

Algorithm 1 demonstrates the cuckoo search algorithm via
Lévy flights. Equation 6 demonstrates how we define the step
of each iteration of the cuckoo search via Lévy flight.

rk(t+ 1) = rk(t) + α · Levy(λ) (6)

Here, rk(t) is the current iteration, rk(t + 1) is the next
iteration and α is a scalar that defines the step between each
iteration. This equation is multiplied by the Lévy function with
a step of size λ.

III. RESULTS

Cuckoo search algorithm has some parameters that must be
adjusted for the given application. The most important is the
number of nests N (i.e., The search number per iteration. A
greater number of nests mean more simulation time. While a
smaller number of nests tends in a poorer result). Intending
to find the optimal number of nests for this problem, we
tested the algorithm performance for different number of nests.
Considering the algorithm randomness, it returns different
results depending on the random seed. Thus we performed
the optimization search 30 times for each number of nests. We
varied the number of nests from 10 to 490. Considering that
each search could take several computation hours, we used an
step of 10 between the number of nests (in this case: 10, 20,

0 100 200 300 400 500
Number of nests (#)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Co
st

 M
ea

n

Average
Average+2
Average-2
Confidence interval of 95% high
Confidence interval of 95% low

Fig. 3. Cost function behavior according to the number of nests.

..., 490 nests). The tool designed a total of 1470 circuits with
different number of nests as parameter and a fixed number of
50 iterations. The result was produced with simulations using
Monte Carlo with 30 samples.

Fig. 3 shows the simulated results. Blue line represents the
mean cost for each number of nests. The cost tends to decrease
quickly until around 200 nests. Thus, we could select the
number of 200 nests as ideal for this application. However,
the average is not always the real value of every simulation.
According to the empirical rule, 95% of all samples are
between x̄− 2σ and x̄+ 2σi. Considering this law, the green
and orange lines on Fig. 3 show the x̄ − 2σ, and x̄ + 2σ
solution behavior. The result shows that even the best solution,
in the 5% of worst results, is worst than the mean of the
worst solutions. Thus, in some cases, even a high number
of nests can reach a bad result. It is the greater drawback
of the tool. However, with a large quantity of simulations
this problem is mitigated, tending to zero. Even considering
the empirical rule, the mean of a sample might be reliable.
According to this law, we can predict how reliable is a sample.
The red and purple lines on Fig. 3 demonstrates the behavior
of the 95% confidence interval in each point. The confidence
interval demonstrates that the obtained mean, compared to the
algorithm evolution with more nests, is close to the real mean.

Considering the behavior of the best cost according the
number of nests, we selected the number of 180 nests as
the best trade-off between simulation time and quality of the
generated result. After this number the drop in the best average
cost is practically irrelevant.

We can analyse the behavior of the algorithm for the
best, median an worst solutions found for 180 nests. Fig. 4
demonstrates the evolution of the cost function for these 3
cases. For the best case, it is possible to observe that the cost
decreases abruptly after 40 iterations. Comparing to the other
cases, the final best case cost function is approximately 50%
smaller than the median case and 1.8 times smaller than the
worst case.

Table I shows each performance specifications compared to



0 10 20 30 40 50
Iteration (#)

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Co

st
Best case cost evolution
Median case cost evolution
Worst case cost evolution

Fig. 4. Cost function evaluation.

[6], which is used as reference. The second, fourth and sixth
columns shows the mean performance of the simulated circuits
for the best, median and worst solutions, respectively. The
third, fifth and seventh column shows the standard deviation
of each specification for the same cases. Compared to [6], the
best solution found in this work has better performance spec-
ifications mean in terms of GBW, PM and Power. AV0 and
SR are slightly worst. However, some instances of the circuits
are better in all these specifications. The median solution has
a similar solution compared to the best case, however with a
small GBW. No instance achieved an AV0 greater than 60dB.
The worst case converged to a poor solution. With exception
of GBW, this solution is worst than the reference.

Fig. 5 shows the distribution of each parameter under vari-
ability for the best, median and worst solutions, respectively.
Figs. 5 (a), (b) and (c) illustrate the PM. Compared to the
reference [6] (52.5) the best case has 943 instances above the
reference, the median 506 and the worst solution 393. Figs.
5 (d), (e) and (f) show the GBW. for compared to [6] (1.88
kHz of GBW), the best case has 981 instances with superior
performance, the median only 1 and the worst solution 995.
Figs. 5 (g), (h) and (i) show AV0, which is 60dB on the
reference. The best case has 70 instances with a performance
superior to 60 dB and median and worst solutions have no
solution above the reference. For SR (Figs. 5 (j), (k) and (l)),
no sample overcame the reference of 0.77 V/ms. However,
the best and the median solution achieved a SR close to this
value. Power consumption (Figs. 5 (m), (n) and (o)) presented
the best results, with all instances from best and median cases
presenting smaller values than the reference of 18 nW. For
the worst solution, only 304 instances overcame the reference.
Considering all features, with exception of the of slew-rate, 53

TABLE I
PERFORMANCE INDICATORS.

Best cost
(this work)

Median cost
(this work)

Worst cost
(this work) [6]

Specification mean σ mean σ mean σ mean
AV0 (dB) 48.22 10.69 42.86 2.32 36.70 5.86 60.00
GBW (kHz) 3.81 0.65 1.54 0.13 2.84 0.35 1.88
PM (º) 59.99 10.15 53.68 7.56 51.59 4.78 52.50
SR (V / ms) 0.53 0.05 0.67 0.03 0.49 0.08 0.77
Power (nW) 8.86 0.22 9.57 0.24 18.19 0.45 18.00

Fig. 5. Distribution of performance for generated solutions (best, median and
worst cases).

instances overcame all references of [6]. Disregarding low-
frequency gain, 934 instances overcame the reference on the
best cases.

IV. CONCLUSION

This work proposed a methodology for automatic analog
IC sizing under process variability. The methodology uses
Monte Carlo simulation in the optimization loop to estimate
circuit performance. The evaluation of the number of nests
in the Cuckoo Search algorithm demonstrated that there is a
trade-off between solution quality and computational time. We
demonstrate that it is possible to automatically find feasible
solutions with superior performance than manual design, even
considering process variation.

REFERENCES

[1] Helmut E Graeb. Analog design centering and sizing, volume 64.
Springer, 2007.

[2] Paolo Antognetti and Guiseppe Massobrio. Semiconductor device mod-
eling with SPICE. McGraw-Hill, Inc., 1990.

[3] Ali Jafari, Saeed Sadri, and Maryam Zekri. Design optimization of
analog integrated circuits by using artificial neural networks. In 2010
International Conference of Soft Computing and Pattern Recognition,
pages 385–388. IEEE, 2010.

[4] Anderson Fortes, Luiz A da Silva, and Alessandro Girardi. Low
power bulk-driven ota design optimization using cuckoo search algorithm.
In 2018 31st Symposium on Integrated Circuits and Systems Design
(SBCCI), pages 1–7. IEEE, 2018.

[5] Kurt Binder, Dieter Heermann, Lyle Roelofs, A John Mallinckrodt, and
Susan McKay. Monte carlo simulation in statistical physics. Computers
in Physics, 7(2):156–157, 1993.

[6] Luis HC Ferreira and Sameer R Sonkusale. A 60-db gain ota operating at
0.25-v power supply in 130-nm digital cmos process. IEEE Transactions
on Circuits and Systems I: Regular Papers, 61(6):1609–1617, 2014.

[7] Friedrich Pukelsheim. The three sigma rule. The American Statistician,
48(2):88–91, 1994.

[8] Xin-She Yang and Suash Deb. Cuckoo search via lévy flights. In 2009
World congress on nature & biologically inspired computing (NaBIC),
pages 210–214. IEEE, 2009.


